Digital Innovation: Auto Industry Evolves its Material and Organizational Infrastructure

Published on: 05/20/2013
Posted on: 05/20/2013
Tagged with:
The frontiers of digital innovation are vast. And the ride into the great unknown of digital innovation can be fraught with challenges. The auto industry is a highly competitive market where digital innovation plays an important role in each player’s strategic differentiation. New research by SMU Cox Information Technology Professor Ulrike Schultze and Ph. D. student Lena Hylving (at Viktoria Swedish ICT, in Gothenburg, Sweden) offers insight into some of the challenges faced and overcome by an auto manufacturer searching for competitive advantage as cars sport more digital features.

The frontiers of digital innovation—meaning the incorporation of digital services into physical objects —are vast.  Just compare the single-utility rotary-style telephone to today’s smart-phone, which serves as email client, camera, alarm clock, flash light, and oh yes, a phone.  And the ride into the great unknown of digital innovation can be fraught with challenges, especially for established manufacturing firms that have organizational routines and structures optimized for the production of physical products. Organizational shakeups as well as scaled-back or delayed product launches are common, potentially losing companies time, money and valuable market share.

The auto industry is a highly competitive market where digital innovation plays an important role in each player’s strategic differentiation. New research by SMU Cox Information Technology Professor Ulrike Schultze and Ph. D. student Lena Hylving (at Viktoria Swedish ICT, in Gothenburg, Sweden) offers insight into some of the challenges faced and overcome by an auto manufacturer searching for competitive advantage through the increasing digitalization of the vehicle. 

The car’s increasing digital capabilities are made apparent to drivers through the enhanced car-related services they now receive (e.g., low tire pressure alerts). This research focuses on the evolution of the instrument cluster in the car’s dashboard, also referred to as the Human-Machine Interface, or HMI. The HMI is the connection point between car and driver.

Why focus on the HMI? Schultze explains, "This is how you as a consumer know the product has changed. HMI is the face of the product; it is where digital innovation becomes manifest. It’s how you become aware you have additional functionality available to you. By implication, the HMI is key to communicating digital innovations. It encompasses material components such as touch screens or volume buttons, as well as the information content that is displayed."

The study

Relying on a case study of a single auto manufacturer that goes by the pseudonym “CarCorp,” the authors compared three different HMI projects over roughly a ten-year period. Development of the first project’s instrument cluster was begun in 2004 and the rollout of the third project’s dashboard design is planned for 2014. 

Each project represents an increase in digitalization. For example, the first instrument cluster sported two 2.5” LCD screens, whose low resolution allowed for only textual information displays, such as outside temperature, text alerts such as ‘service is due’. In contrast, the latest instrument cluster is comprised of a single 12.5” high-resolution LCD screen that is capable of displaying video and personalized HMIs. (See video links at end of paper for digital instrument examples.) Additionally, with each evolution of the instrument cluster, more information from the car’s multiple sensors became available to the driver and existing sensor data was combined in novel ways. For example, to provide a more accurate fuel tank reading, data from the fuel tank sensor was combined with data from the incline sensor among others in the later designs of the instrument cluster.

The objective of the research is to trace the implications of digital innovation on the architecture of the firm’s products, as well as on the firm’s organizational infrastructure. Typically, in the manufacture of physical goods, the modular architecture of the product is mirrored by its organizational structure. For example, the automaker's organizational group “Centerstack and Climate Control” handles the development of the center stack (the console between the driver’s and front passenger’s seat), which includes all the climate controls inside the car. The digitization of products challenges this logic, however.

The research thus poses a number of questions: How do the product and organizational architecture evolve and why? And what is the most effective way for manufacturers to organize in the face of digital innovation? In this case, a single device, the display screen in a car’s instrument cluster, is leveraged to provide a plethora of services, including apps sold by third parties.

"Traditional companies, in this case an auto firm, have certain organizing logics in place," notes Schultze.  What the researchers found is that the transition to organizational structures, processes, routines and culture that enable digital innovation is challenging. Schultze continues, "A variety of issues exist in terms of physical product architecture (technology) and organizational infrastructure. It also encompasses how the organization sees its identity. Are we a traditional car company, a software company, or what?"

Hylving, who worked for an HMI vendor prior to embarking on her PhD studies, points out that carmakers are increasingly trying to catch up to the mobile device and apps markets. "Before there was automaker-to-automaker competition; now that the car becomes Internet-enabled, they are also competing with digital service providers such as Google, Spotify, Pandora and consumer electronics. The car is increasingly regarded as a technology platform just like Google and Facebook.” In fact, the third CarCorp HMI project that the researchers studied openly embraced the concept of technology platform in its design.

Clearly Demarcated Layers

Prior theory on digital innovation suggests that a manufacturer of physical goods needs to evolve their modular product architecture to one that is both modular and layered. Layered architecture pervades digital products, including the Internet and technology platforms such as Google and Facebook, which rely on user-generated content to complete and add value to their technological service, says Schultze.

The layer metaphor implies that, despite the ability to separate between the different tiers in the product stack, there is a hierarchical dependence between the different strata that make up a product’s architecture. To illustrate: a Facebook app cannot function without the Facebook platform as it draws on the platform’s databases through the published interface or API (application programming interface); however, Facebook can function without the app.

A simplified view of the digital product stack reveals four layers: the bottom-most or device layer encompasses the physical product. In the case of the car, this could be the fuel tank and its sensors that generate data. The network layer of the digital product stack is responsible for the connection between the device layer and the next layer up, namely the service layer, which consists of programs that convert the data into information that can be displayed on the driver dashboard. The programs in the service layer may offer drivers additional features, such as the ability to customize the console with respect to its look, feel and what information is displayed. The top-most strata of the stack is the content layer, which essentially corresponds to the HMI. In the case of the car, this includes the speedometer and tachometer dials on the driver console. 


In order to enhance the adaptability and scalability of digitalized products, it is important to have strict boundaries between the layers in the stack.  In this way, changes in the device layer, like an upgrade of the fuel sensor, should not require a change in the network layer. To accomplish this degree of uncoupling between the digitized product’s layers, well-defined boundaries and interfaces between each tier are required. The automaker needed to integrate this layered architecture approach within its organizational structure.

The research highlights that a chief accomplishment of each iteration of the CarCorp HMI was the production of clearly-defined boundaries between the layers of the product's stack. During the first project, where the content-service layer distinction was not yet established, the integration challenges were formidable and despite a time overrun of a month, the project did not deliver fully on all anticipated functionality.

However, CarCorp’s first foray into digital innovation did generate a product specification that clearly demarcated the content from the service layer. The second project solidified this content-service layer boundary by embedding it in an HMI design tool. Additionally, a protocol defining the interface between the network and the service layer was developed. By the time the third HMI project was begun, the layered modular architecture was mostly in place, making it possible to add Internet connectivity to the network layer and to incorporate multiple third-party app developers into the service layer without too much disruption.

“After years of research that has vilified organizational silos, it seems a little counter-intuitive to argue for clearly bounded layers,” Schultze points out. “Like the idiom ‘good fences make good neighbors,’ it seems somewhat contradictory. But given the dependence of higher-level layers on lower-level ones in digital products, it’s clear that demarcations of responsibilities in not only each layer of a product’s architecture but also in the organizational unit responsible for maintaining it, is desirable.”

Toggling between Technological and Organizational Change

The research further highlights that changes in the product’s material architecture need to be accompanied by changes in the organization’s infrastructure. Schultze explains, "Digital innovation is not just a matter of developing a layered product architecture in terms of protocols and APIs, but it is also a matter of the organizational infrastructure evolving to match the material one."

Maintaining organizational structures and routines that reflect the logic of a traditional modular production environment will likely cause digital innovations to fail. This was the case in CarCorp’s first foray into digital innovation. Schultze explains, "The functional organization appropriate for the manufacture of modular components made it difficult to integrate functionality into the digital instrument cluster. Since the owners of a car module that provided sensor data to the HMI (e.g., fuel tank, engine, navigation) had traditionally determined what information they wanted included in the driver console, the development of the content-service layer interface was done for each of these physical components." This was a tedious and fragmented process that led to many cascading errors.

In contrast, during the development of the third project, CarCorp’s HMI group had risen in prominence, growing in both size and diversity of expertise. Previously receiving design assignments from distinct functional groups, the HMI group now spearheaded the design of the instrument cluster. They organized in cross-functional teams to develop a coherent design that leveraged the full capacity of the single LCD screen. Interacting in these cross-functional teams led to the innovative combination of the multiple sensors’ data that generated new information displays.

Sometimes an organization leads change, but in this case the technology led. "The material changes or the technology desired by consumers drove the organizational change in this case," says Schultze.

The paper "Increasing Digitalization in Product Innovation: Material and Organizational Implications" is authored by SMU Cox's Information Technology professor Ulrike Schultze and Lena Hylving. It will be submitted to the International Conference on Information Systems Conference, which will be held in Milan, Italy, in December 2013.

Written by Jennifer Warren.

Video links of examples of digital instruments:

Link 1

Link 2

Link 3

Resource Tags
Bruce Bullock SMU Cox Maguire Energy Institute Mickey Quinones Mike Davis Zannie Voss Bud Weinstein Richard Briesch Edward Fox Robert Dudley SMU Cox School of Business Bill F Maxwell W Michael Cox Frank Lloyd Albert W Niemi Uskla Igaly Mel Fugate Christine Cook Cary Maguire Brian Bruce Dan Howard WMichael Cox SMU Cox Caruth Institute for Entrepreneurship Scott MacDonald Robert Puelz Carl Dorvil Marci Armstrong Dean Niemi Michael Cox hina union of concerned scientists green infrastructure sustainability CRM Jacquelyn Thomas Journal of the Academy of Marketing Science darius miller sec 12g302(b) foreign regulation pink sheets yankee bondglobal bond investment apple glenn voss google zannie giraud voss communal sharing idiosyncratic communities Walter Williams O'Neil Center ONeil Center peak theory fuel energy Maguire Institute James Smith Marketing Relationship Social Marketing information overload China sustainability green infrastructure S Scott MacDonald Southern Methodist University's business school Albert Niemi The O'Neil Center for Global Markets and Freedom Lynda Oliver Cox Executive Education Maguire Energy Institute Cox School of Business (Cox Full-Time MBA Profile Maria Minniti Charles Dannis Dallas MBA Best MBA Top 25 SMU SMU Cox MBA Top-ranked MBA Dallas Texas best Business BusinessWeek Cox School of Business Jerry White entrepreneurs levesque branding ward jonah berger avatar social presence telepresence second life virtual worlds inance hedge funds best mba derivatives executive compensation swami kalpathy Giving EMBA Second Century GLP Brazil Amit Basu Richard Alm Entrpreneurship health care yunwei gai Asia MBA Ernst&Young Management Briefing Series Richard Templeton Intrapreneurship Finance Economics Collins Education Center NHCC CEDP HYI workshop Bud Weinstein Steve Denson Albert W Niemi Jr W Michael Cox and Richard Alm found Alan Bromberg NHCC Executive Education Sarbanes-Oxley SOX Reg FD Management SMU Cox MBA in Dallas Real Estate William Maxwell New York Times Albert McLelland Marty Flanagan brand commitment MA-MBA Bernard Weinstein Ed Easterling Lewis Wang Luke Longhofer Robert Lawson Michael Hinson BBA Global Leadership Program Negotiations Kitt Investing and Trading Center Ethics Free Market O'Neil PMBA Ed Cox Edwin L Cox Allen Gwinn SMU MBA Ed Fox Cox in the News David Lei Banking Quinones Rasberry Entrepreneurship Caruth Albert Niemi ITOM Social Media FTMBA MSA MSF Morgan Ward Cox Relay Challenge Dr Pepper Management and Organizations BLC Communications MAMBA Al Niemi Risk Management Insurance Chuck Dannis Master Negotiations Statistics Kitt Center Hayek Keynes Dean Albert Niemi false memories Caruth Institute Mike Lysko Robin Pinkley Don Vanderwalle Hemang Desai Bud Weinstein, Bruce Bullock Mike Davis, Bud Weinstein Southern Methodist Business Harvey Rosenblum Robert Rasberry Cox School of Busines Wayne Shaw Judy Foxman Immigration Paula Strasser W Michael Cox, Richard Alm Johan Sulaeman Julie Lynch Tom Tan Southern Methodist Don Shelly Business SMU Edward JFox Don Shelly Zannie Voss, Glenn Voss Ann Marie Gan